
Chapitre 7

Machines thermiques

7.6 Cycle moteur de Brayton

Un gaz parfait subit quatre processus réversibles formant le cycle
moteur de Brayton (fig. 7.1) :

1→ 2 compression adiabatique,

2→ 3 expansion isobare,

3→ 4 détente adiabatique,

4→ 1 contraction isobare.

Les pressions p1 et p2 ainsi que les volumes V1 et V3 sont supposés connus.

Fig. 7.1 Digramme (p, V ) du cycle moteur de Brayton.

1) Déterminer le travail W3→4 réalisé sur l’environnement lors de la détente
adiabatique 3→ 4.

2) Déterminer la chaleur Q2→3 fournie au gaz lors de l’expansion isobare
2→ 3.

3) Déterminer la variation d’entropie ∆S4→1 lors de la contraction isobare
4→ 1.

4) Esquisser le diagramme (T, S) du cycle.
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7.9 Cycle d’Otto

Le cycle d’Otto est un modèle de moteur à combustion qui représente
le mode opératoire de la plupart des moteurs à combustion non diesel. Il est
constitué de quatre processus lorsque le moteur est modélisé comme un système
fermé, et de deux processus isobares supplémentaires lorsque le système est
ouvert. Ces deux processus correspondent à l’admission d’air et à l’échappement
des gaz. Ainsi, on a,

• 0 → 1 admission isobare d’air,

• 1 → 2 compression adiabatique,

• 2 → 3 compression isochore,

• 3 → 4 détente adiabatique,

• 4 → 1 décompression isochore,

• 1 → 0 échappement isobare des gaz.

Supposer que les processus adiabatiques sont réversibles et que le gaz est un
gaz parfait caractérisé par le coefficient c (5.78) et le coefficient γ = (c+ 1) /c.
Les valeurs suivantes de certaines variables d’état sont supposées connues : la
pression p1, les volumes V1 = V4 et V2 = V3, la température T3 et le nombre
de moles N d’air à l’admission. Analyser ce cycle en utilisant les instructions
suivantes.

1) Esquisser le diagramme (p, V ) du cycle en représentant aussi les processus
d’admission et d’échappement.

2) Esquisser le diagramme (T, S) du cycle sans représenter les processus
d’admission et d’échappement.

3) Décrire ce que le moteur fait durant chaque processus.

4) Expliquer pourquoi un échange d’air avec l’extérieur est nécessaire.

5) Sur les diagrammes (p, V ) et (T, S) déterminer les relations entre les aires
délimitées par les cycles, le travail W et la chaleur Q par cycle.

6) Déterminer toutes les variables d’état aux points 1, 2, 3 et 4 du cycle,
c’est-à-dire trouver p2, p3, p4, T2 et T4.

7) Déterminer le travail W effectué par cycle et la chaleur Q échangée durant
un cycle.

8) Déterminer le rendement du cycle d’Otto,

ηO = − W

Q+

où Q+ = Q2→3.

7.10 Cycle d’Atkinson

James Atkinson était un ingénieur anglais qui a conçu plusieurs
moteurs à combustion. Le cycle thermodynamique qui porte son nom est une
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modification du cycle d’Otto conçue pour améliorer son rendement. Le prix à
payer pour parvenir à un meilleur rendement est une diminution du travail réa-
lisé par le gaz sur l’environnement durant un cycle. Le cycle idéalisé d’Atkinson
est constitué des six processus réversibles suivants :

• 1 → 2 : compression adiabatique,

• 2 → 3 : compression isochore,

• 3 → 4 : expansion isobare,

• 4 → 5 : détente adiabatique,

• 5 → 6 : décompression isochore,

• 6 → 1 : contraction isobare.

On suppose que les processus adiabatiques sont réversibles et que le cycle a lieu
sur un gaz parfait qui est caractérisé par,

p V = N RT U = cN RT γ =
c+ 1

c

Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées
connues : les volumes V1, V2 et V6, les pressions p1 et p3, la température T5
et le nombre de moles N de gaz. Analyser ce cycle en utilisant les instructions
suivantes.

1) Esquisser le diagramme (p, V ) du cycle d’Atkinson.

2) Déterminer les pressions p2, p4, p5, p6, les volumes V3, V4, V5 et les tempé-
ratures T1, T2, T3, T4, T6, en termes des grandeurs physiques connues.

3) Déterminer les travaux W1→2, W2→3, W3→4, W4→5, W5→6, W6→1 et le
travail W effectué par cycle.

4) Déterminer les transferts de chaleur Q1→2, Q2→3, Q3→4, Q4→5, Q5→6,
Q6→1 et la chaleur Q+ = Q2→3 +Q3→4 fournie au gaz.

5) Déterminer le rendement du cycle d’Atkinson,

ηA = − W

Q+

7.11 Cycle calorifique

Un gaz parfait caractérisé par le coefficient c (5.78) et par le coef-
ficient γ = (c+ 1) /c subit un cycle calorifique constitué de quatre processus
réversibles (fig. 7.2) :

• 1 → 2 : compression adiabatique,

• 2 → 3 : contraction isobare,

• 3 → 4 : décompression isochore,

• 4 → 1 : expansion isobare.

Analyser ce cycle en utilisant les instructions suivantes.
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Fig. 7.2 Diagramme (p, V ) du cycle calorifique

1) Déterminer le volume V2 en termes du volume V1 et des pressions p1 et p2.

2) Déterminer la variation d’entropie ∆S2→3 durant la contraction isobare.

3) Déterminer la chaleur échangée Q2→3 durant la contraction isobare.

4) Supposer à présent qu’au lieu d’un gaz parfait on a utilisé un fluide qui est
entièrement dans un état gazeux au point 2 et entièrement dans un état
liquide au point 3. La contraction isobare 2 → 3 est alors une transition de
phase qui a lieu à la température T et qui est caractérisée par la chaleur
latente molaire de vaporisation ``→g. Déterminer la variation d’entropie
∆S2→3 durant la transition de phase en termes du nombre de moles N de
fluide, du volume V2, de la pression p2 et de la chaleur latente molaire de
vaporisation ``→g, en supposant que p V = NRT dans la phase gazeuse.

7.12 Cycle de Carnot progressif

Un système simple constitué deN moles de gaz parfait monoatomique
homogène est contenu dans un cylindre fermé. Durant chaque cycle ditherme,
le gaz parfait est mis en contact avec une source chaude fermée, qui est un
réservoir à température fixée T+, et avec une source froide fermée et rigide qui
est constituée de N moles de gaz parfait diatomique homogène. La source froide
n’est pas un réservoir de chaleur. Ainsi, la température de la source froide varie
d’un cycle au suivant dû au transfert de chaleur avec le système. Toutefois,
dans ce modèle, on fait l’approximation que la température de la source froide
est constante durant chaque cycle. Cela est le cas si le cycle est suffisamment
petit pour être considéré comme quasiment infinitésimal. Au début du ne cycle,
la température de la source froide est T− (n). Durant ce cycle, le gaz parfait
monoatomique subit les quatre processus réversibles formant le cycle réversible
moteur de Carnot (fig. 7.3) :
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• 1 → 2 détente isotherme à température T+,

• 2 → 3 détente adiabatique,

• 3 → 4 compression isotherme à température T− (n),

• 4 → 1 compression adiabatique.

La capacité thermique isochore CV des N moles de gaz monoatomique dans le
système et la capacité thermique isochore C −V (n) des N moles de gaz diato-
mique dans la source froide durant le ne cycle s’écrivent,

CV = cNR =
3

2
NR et C −V (n) = c−(n)NR

En raison des degrés de liberté internes aux molécules, la capacité thermique
isochore de la source froide change brusquement en fonction de la température.
On modélise cela en considérant que durant les n0 − 1 premiers cycles, c’est-
à-dire n < n0, le gaz parfait de la source froide est diatomique rigide et que, à
partir du ne0 cycle, c’est-à-dire n > n0, il devient diatomique vibrant,

c−(n) =


5

2
si n < n0

7

2
si n > n0

Les grandeurs suivantes sont supposées connues : la température T+ de la
source chaude, la température T−(n) de la source froide au début du ne cycle,
les volumes V1 et V2, le nombre N de moles de gaz parfait, les nombres de
cycles n et n0, la constante c−(n).

1

2

3
4

Fig. 7.3 Diagramme (p, V ) du ne cycle de Carnot progressif.

Analyser ce cycle en utilisant les instructions suivantes.

1) Esquisser qualitativement le diagramme (T, S) du ne cycle en indiquant les
états 1 à 4 et en définissant l’orientation du cycle avec des flèches.
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2) Déterminer la chaleur Q−(n) restituée à la source froide à température
T −(n) durant le ne cycle.

3) Déterminer le travail W (n) effectué sur le système durant le ne cycle.

4) Déterminer la variation d’enthalpie ∆H2→3 (n) du système lors de la dé-
tente adiabatique 2→ 3 durant le ne cycle.

5) Montrer que l’accroissement de température ∆T −(n) de la température de
la source froide lors du ne cycle s’écrit,

∆T −(n) = λ (n) T −(n)

et déterminer le coefficient λ (n) > 0.

6) En déduire les températures de la source froide T −(n0) et T −(n1) au début
des ne0 et ne1 cycles, où n1 > n0, en termes de sa température initiale T −(1)
au début du 1er cycle.

7) Durant le 5e cycle, en supposant n0 > 5, on constate que le rendement
ηC (5) du moteur fonctionnant selon ce cycle de Carnot progressif a diminué
de 20% par rapport au rendement ηC (1) durant le 1er cycle. Déterminer
le rapport des volumes V2/V1 en termes de la température T −(1) de la
source froide au début du 1er cycle. En déduire la température au début du
5e cycle.

7.13 Machine de Stirling à deux compartiments

Dans une machine Stirling opérant un cycle calorifique, un gaz par-
fait est enfermé par deux pistons dans un cylindre métallique d’axe horizontal
(fig. 7.4).

Fig. 7.4 États caractéristiques du cycle calorifique d’une machine de Stirling. Les parois
de gauche et de droite sont les sources de chaleur à températures T+ et T−. Les surfaces
striées représentent la grille séparant les deux compartiments. La grille n’est pas en contact
thermique avec l’environnement.

Les parois disjointes du cylindre, représentées en gris foncé, sont les sources
de chaleur à température T+ et T−. Les deux compartiments dans lesquels
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se trouve le gaz sont séparés par une grille, qui fait office de paroi perméable
représentée avec des stries, à travers laquelle passe le gaz lors du mouvement
des pistons. Dans les deux compartiments, considérés comme des sous-systèmes
simples, le gaz parfait, caractérisé par le coefficient c (5.78), subit un cycle
calorifique de Stirling constitué de quatre processus (fig.7.5) :

• 1 → 2 : compression isotherme à la température T+ des parois de gauche ;

• 2 → 3 : décompression à travers la grille d’un volume initial V − à pression
constante p2 à gauche à un volume final V − à pression constante p3 à
droite ;

• 3 → 4 : détente isotherme à la température T− des parois de droite ;

• 4 → 1 : compression à travers la grille d’un volume initial V + à pression
constante p4 à droite à un volume final V + à pression constante p1 à gauche.

Analyser ce cycle en utilisant les instructions suivantes.

1) Déterminer le travail W+
2→3 effectué par le piston de gauche sur le gaz à

pression constante p2 et le travail W−2→3 réalisé par le gaz sur le piston
de droite à pression constante p3 lors de la décompression d’un volume
initial V − à gauche à un volume final V −. En déduire le travail W2→3 =
W+

2→3 +W−2→3 effectué par les pistons sur le gaz et l’exprimer en fonction
des températures T+ et T− des deux sources de chaleur.

2) Déterminer le travail W−4→1 effectué par le piston de droite sur le gaz à
pression constante p4 et le travail W+

4→1 réalisé par le gaz sur le piston de
gauche à pression constante p1 lors de la compression d’un volume initial V +

à droite à un volume final V +. En déduire le travail W4→1 = W+
4→1+W−4→1

réalisé par le gaz sur les pistons et l’exprimer en fonction des températures
T+ et T− des deux sources de chaleur.

3) Déterminer la variation d’énergie interne ∆U2→3 durant la décompression
et la variation d’énergie interne ∆U4→1 durant la compression.

4) Déterminer la chaleur Q2→3 fournie au gaz par les sources de chaleur durant
la décompression et la chaleur Q4→1 restituée aux sources de chaleur par
le gaz durant la compression.

V

T +

T –

V – V +

Fig. 7.5 Diagramme (p, V ) du cycle de Stirling calorifique pour un gaz parfait.
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5) Montrer que les variations d’enthalpie sont les chaleurs échangées entre les
sources de chaleur et le gaz parfait,

∆H2→3 = Q2→3 et ∆H4→1 = Q4→1

7.14 Cycle de Rankine

Un gaz parfait caractérisé par le coefficient c (5.78) et par le coefficient
γ = (c+ 1) /c subit un cycle moteur de Rankine constitué de quatre processus
réversibles :

• 1 → 2 : expansion isobare,

• 2 → 3 : détente adiabatique,

• 3 → 4 : contraction isobare,

• 4 → 1 : compression adiabatique.

Ainsi, le cycle est représenté par un rectangle dans un diagramme (p, S)
(fig.7.6).

p1

p3

S1 S2

1 2

4 3

p

S

Fig. 7.6 Diagramme (p, S) d’un cycle de Rankine pour un gaz parfait.

Analyser ce cycle en utilisant les instructions suivantes.

1) Esquisser le diagramme (p, V ) du cycle de Rankine pour un gaz parfait.

2) Déterminer les travaux effectués W1→2, W2→3, W3→4 et W4→1 et le travail
effectué durant un cycle W en termes des enthalpies H1, H2, H3 et H4.

3) Déterminer la chaleur fournie au réservoir chaud Q+ = Q1→2 en termes
des enthalpies H1, H2, H3 et H4.

4) Déterminer le rendement du cycle de Rankine pour un fluide parfait défini
comme,

ηR = − W

Q+



Cycle de Stirling pour un fluide biphasique 9

7.17 Cycle de Stirling pour un fluide biphasique

Un fluide de van der Waals constitué de N moles est contenu dans
un cylindre fermé. Le cycle moteur de Striling que subit le fluide biphasique
est formé de quatre processus :

• 1 → 2 détente isotherme réversible à température T+,

• 2 → 3 décompression isochore réversible à volume V +,

• 3 → 4 condensation à température T− et pression p−,

• 4 → 1 compression isochore réversible à volume V −.

La courbe de saturation est représentée en traitillé. Les valeurs suivantes de
certaines fonctions d’état et paramètres sont supposées connues : la tempéra-
ture T+ de la source chaude, la température T− de la source froide, les volumes
V + et V −, le nombre N de moles et la chaleur latente molaire de vaporisation
``→g (fig. 7.7).

T

–

+

V

p

1

2

34
T

V +
–V

–p

Fig. 7.7 Diagramme (p, V ) du cycle moteur de Stirling pour un fluide biphasique.

Analyser ce cycle en utilisant les instructions suivantes.

1) Déterminer la variation de pression ∆p du fluide de van der Waals durant
un cycle.

2) Déterminer la chaleur Q1→2 fournie au fluide de van der Waals durant la
détente isotherme.

3) Déterminer la variation d’énergie libre ∆F1→2 du fluide de van der Waals
durant la détente isotherme.

4) Déterminer la variation de l’enthalpie ∆H2→3 du fluide de van der Waals
durant la décompression isochore en précisant son signe.

5) Exprimer la variation d’enthalpie ∆H3→4 du fluide de van der Waals durant
la condensation, qui est une transition de phase à pression constante p−

ayant lieu lorsque le fluide est en contact avec un réservoir de travail, en
termes de la chaleur latente molaire de vaporisation ``→g en précisant son
signe.
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6) Déterminer la variation d’entropie ∆S4→1 du fluide de van der Waals durant
la compression isochore en précisant son signe.

7) Déterminer la variation d’énergie de Gibbs ∆G3→4 durant la condensation
dans le cas particulier où les potentiels chimiques du gaz et du liquide
s’écrivent µg = µ0 (Ng − N`) et µ` = µ0 (N` − Ng) où Ng et N` sont les
nombres de moles de gaz et de liquide de van der Waals et µ0 = cste > 0.


